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At the present time we are well familiar with the experimental fact that the slip line 
slopes in metals exhibit differences between tension and compression [i]. The qualitative 
explanation of this fact and the quantitative determination of the plastic deformations 
that arise in this case are made possible by the positions of the theory [2] which makes 
provision for the different resistances of the materials to plastic deformation in tension 
and compression. The Coulomb--Mohr plasticity condition is used in [2] for metals in the 
region of tensile stresses, and in the presence of an additional characteristic of the materi- 
al of the internal friction angle this condition makes it possible to establish exact agree- 
ment between the yield points in uniaxial tension and torsion. It has also been demonstrated 
in [2] that the growth of plastic deformation leads to an increase in the internal friction 
angle, i.e., the embrittlement of the metal. The traditional methods of solving statically 
determining problems [3, 4] are based on the Trask-Saint Venant plasticity condition. 

In the present study, for purposes of solving a certain class of such problems, we 
suggest the utilization of the Coulomb-Mohr plasticity condition for metals, which had earlier 
been used in the statics of free-flowing materials [5]. From this particular viewpoint, 
we examine the problems of plane deformation of a rigidly plastic medium: the tension and 
compression of a strip that has been weakened through notching, and the drawing of this 
strip through a short die. 

i. We will denote the principal normal stresses oi, i = l, 2, 3, and the principal 
axes of the stress tensor will be numbered i, 2, 3, so that 01 e a 2 e 03 . The Coulomb-Mohr 
plasticity condition can then be written in the following form: 

T/cos~  + ~ t g T  = k, (i.i) 

where  T = (o  1 - o 3 ) / 2 ;  o = (o  z + o 3 ) / 2  ; ~ i s  t h e  i n t e r n a l  f r i c t i o n  a n g l e ;  k i s  t h e  p l a s t i c  
constant. The planes on which condition (i.i) is achieved are referred to as the slip planes 
and these pass through the second main direction and together with the first form the angles 
• + ~/2) [5]. The internal friction angle reflects the influence of normal stress on 
the limit value of the tangential stress on these planes. The plastic constant k = 0.5(1 + 
sin ~)Os/COS ~ (o s is the yield point in the case of uniaxial tension). 

If T s represents the twisting yield point, then from (i.i) we have sin @ = 0.5-Os/~ s - 
i. For the Trask-Saint Venant plasticity condition �9 = 0. From the Mises plasticity con- 
dition Os/T s = ~, so that for those metals whose onset of plasticity is better described 
by the Mises condition than by the Trask condition we should assume sin T = 0.15 (~ = 9~ 

We know that the associative law of flow [6,7] leads to an irreversible change in 
material volume, i.e., dilatancy. However, this fact, characteristic of most rocks and 
free-flowing materials is not as significant in the one-time loading of plastic metals whose 
change in volume proceeds elastically. In this connection, in [2] we find proposed a theory 
of plasticity which independently provides for the effect of internal friction and dilatancy, 
said theory based on additional experimental data. This circumstance allows us to use the 
Coulomb-Mohr plasticity condition (i.i) for plastic incompressible metals. 

Let us study the plane deformation of an ideal plastic medium within the scope of a 
rigidly plastic scheme [3, 4]. We will limit ourselves to the determination of the stress 
field in problems dealing with the tension and compression of a notched strip and the draw- 
ing of that strip through a short die. 

Let us examine an arbitrary orthogonal coordinate system x, y, z (Fig. i). The z axis 
is the principal axis and coincides with the direction 2. In the x, y coordinate system 
we have 
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( 1 . 2 )  

[(i, x) is the angle which forms the first principal direction with the x axis]. 

The line each of whose points is tangent to the slippage plane [5] is known as the 
slippage line in the x, y plane. It is obvious that we are dealing with two families of 
such lines: ~ and ~ (a is deflected to the right of the first principal direction through 
the angle ~/4 + ~,/2, ~ is deflected to the left, through the same angle). 

We will denote the angle formed by the a line with the x axis as @, since, as can be 
seen from Fig. i, (i, x) = ~/4 +~/2 + @. With consideration of this substitution from 

(1.2), it follows that 

~ = G -- Tsin(20 + ~), (1.3) 

~y = ~ + Tsin(20 + @, t~y = Toes(20 + ~). 

It is primarily the equations of plane equilibrium that serve as the main equations 
for the determination of the stress field in the plastic zone: 

Oax/Ox + Otxy/Oy = O, (1.4) 

•  = O, 

which t o g e t h e r  w i t h  ( 1 . 1 )  and t h e  bounda ry  c o n d i t i o n s  in  t h e  s t r e s s e s  make up t h e  s t a t i c a l l y  
d e t e r m i n i n g  p rob lem [ 5 ] .  

Having s u b s t i t u t e d  ( 1 . 3 )  i n t o  ( 1 . 4 ) ,  we o b t a i n  

( l~+ sin ~ sin(20 + q~))a(#Sx - -  2Tcos(20 + 

+ c#)SO/Ox - -  sin q~cos(2O @ cp)0o/Sg --  2Tsin(20 +4- 

+ r = o,  

--sin qD cos(20 + q))a(~/ax - -  2Tsin(20 + q))aO/ax + 

+4- (1 - -  sin qD sin(20 + q)))O(~/Oy @ 2Tcos(20 + (p)O0/@ = 0 

( T  ---- ( ~ l  - -  ( r3 ) /2  = k c o s  T - -  ~ sin ~). 

( 1 . 5 )  

System of equations (1.5) is hyperbolic, and its characteristics coincide with the 
slippage lines a, 6- The differential equations of the a, ~ family are, respectively, equal 
to 

dy/dx = tg0, dy/dx ---- --ctg(0 + q~). (1.6) 
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The equilibrium equations can be replaced by the relationships prevailing on the char- 
acteristics initially derived by Ketter in 1903: 

ctg(p In(l --((r/k)tgq)) + 20 = ~ along the (z-. l lne  

ctgq~ ln ( t  - -  ((~/k)tgq)) - -  20 = '1 along the ~- l i ne  
(1.7) 

2. Let us examine the tension (compression) problem of a strip with angled notches 
under conditions of plane deformation. In the formulation traditional for metals (~ = 0) 
the solution can be found, for example, in [3, 4], and in this case, whether for tension 
or for compression, the field of the slippage lines is identical. The maximum load P is 
calculated from the formula 

Pl(2h~)  = qlzs = t + ~12 - -  ?. 

I f  r > 0,  t h e  p l a s t i c  z o n e  a n d  t h e  g e o m e t r y  o f  t h e  s l i p p a g e  l i n e s  f o r  t h e  t e n s i o n  o f  
t h e  s t r i p  o r  f o r  i t s  c o m p r e s s i o n  w i l l  b e  d i f f e r e n t .  F i g u r e  2 a ,  b s h o w s  g r i d s  o f  t h e  s l i p p a g e  
l i n e s  f o r  t e n s i o n  and  c o m p r e s s i o n ,  r e s p e c t i v e l y ,  o f  a s t r i p  w i t h  a n g u l a r  n o t c h e s .  

I n  t h e  y d i r e c t i o n  ( F i g .  2 a )  l e t  t h e r e  be  t e n s i o n  o f  t h e  s t r i p  w i t h  a n g l e  n o t c h e s .  
S i n c e  t h e  l a t e r a l  n o t c h e s  a r e  f r e e  o f  s t r e s s e s ,  we f i n d  f r o m  t h e  b o u n d a r y  c o n d i t i o n  a t  AD 
t h a t  0 = - ~  - u / 4  - % / 2 ,  z = k c o s ~ / ( 1  + s i n ~ ) .  A t  AO we h a v e  8 = - 3 v / 4  - ~ / 2 ,  Oy = q+ = 
k c o s  ~ + :o~(1 - s i n  ~ i ) .  U s i n g  r e l a t i o n s h i p  ( 1 . 7 )  a l o n g  t h e  B l i n e  o f  OBCD, we now o b t a i n  

(o+) (3 +) 
c tgq ) In  t - - T t g q )  + 2  - T g +  = 

= etg q9 In I t -t- sin ~ ~ T -t- , 

from which it follows that 

q+ l + s i n ~  (1 l - - s in~  ) 
~--~-= 2sin-----T t + sin T e - (~-2v) tg~"  ( 2 . 1 )  

The maximum load P+ for the tension of the notched strip is determined from the formula 
p+ = 2q+h. 

In the case of strip compression (see Fig. 2b), without dwelling on the easily accom- 
plished calculations, we come to the following value for the maximum load P- = 2q-h: 

q-- i -  s in~ {i + si~T ) 
a--/ : 2 s in~  \ ~  e(g-2?)tgm-- t (2.2) 

(o c is the yield point with uniaxial compression). 

Table 1 shows the results from the calculations of the limit loads on the basis of 
formulas (2.1) and (2.2) for materials with different internal-friction angles, both for 
tension and compression of a strip with angles of 7 = 0 and 30 ~ . It follows from an analysis 
of these results that the internal-friction angle significantly affects the magnitude of 
the limit load, both in tension of the strip and in its compression. 

3. Of considerable interest for the processes of pressure treatment of metals is that 
class of problems in which the stresses and velocities at each point in the x, y flow plane 
undergo no change over time, while the plastic flow is steady. Let us examine one such prob- 
lem. We will turn to the study of the stress field in a rigidly plastic strip as it is 

TABLE 1 

q+l% I q-l% q+/% q--/% 
(P 

~ : 0  y = 3 0  ~ 

2,57 
2,26 
2,0i 
i ,82 
i,66 

2,57 
2,97 
3,50 
4,2i 
5,i9 

2,05 
t,88 
1,73 
i,62 
i,5i 

0 
5 ~ 

10 ~ 
t5 ~ 
20 ~ 

2,05 
2,25 
2,5i 
2,83 
3,24 
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drawn between nonmoving smooth walls of a die, these walls forming the angle ~ with the 
x axis (Fig. 3). We will denote with H the initial thickness of the strip, while the final 
thickness will be denoted h. Let us assume that the die is of limited length, and that 
the plastic zone consists of the regions illustrated in Fig. 3. An analogous problem for 
an ideal plastic material in traditional formulation (~ = 0) has been solved in [3]. Let 
us formulate the boundary conditions of this problem for the upper half of the strip, mak- 
ing the assumption that a uniformly distributed pressure acts along the entire contact straight 
line AO. To simplify the solution of the problem, we will neglect the friction at the con- 
tact planes of the strip and the die. Thus, on AO for the stress vector we have only the 
normal component equal to -q. Therefore, in the triangle AOC we have 0 = --y -~/2 - ~/4, 
o = o C = -q/(l + sinq~,) + k cos~:/(1 + sin~). 

On the basis of relationship (1.7), along the slippage lines CD and BD we have 

[( )/( )] In t - - - z - t g ~  t - - - k - t g ~  = 2 t g ~ ( 2 ~ + ? ) .  

On t h e  o t h e r  h a n d ,  u s i n g  ( 1 . 7 )  on t h e  l i n e s  CF a n d  BF, we w r i t e  

[( )/( )] in l - - ~ t g q o  1--  ~ :  tg(~ =2tgq~(2~p--7). 

It follows from the two found relationships that ~ = ~ + ~. An analogous relationship 
between the angles ~, a, and ~ is found in the familiar solution of R. Hill et al. [3] for 
metals without internal friction. 

We can easily see in Fig. 3 that the maximum degree of deformation a = (H - h)/H is 
achieved when a = 0. Then, the point C merges with D, and point B merges with F. Let us 
examine this particular case in greater detail, with the solution of this problem solved 
analytically (Fig. 4). On OB 

0 = - - ~ / 4  - -  T/2, ~ = oB, 

~x = aB( l - -  sin ~) -F k cos ~, 

~y = ~B(l § sin ~) - -  k cos ~, ~ y  = 0. 

U s i n g  r e l a t i o n s h i p  ( 1 . 7 )  a l o n g  t h e  a l i n e  o f  ADB, we o b t a i n  

(3.i) 

oB = k ctg ~( l  - -  ( l  - -  (oC/k)tg ~) e-~tgv). ( 3 . 2 )  

H a v i n g  d e t e r m i n e d  a C f r o m  t h e  b o u n d a r y  c o n d i t i o n  on AO i n  t e r m s  o f  q a n d  h a v i n g  made  t h e  
s u b s t i t u t i o n  i n t o  ( 3 . 2 ) ,  i n  c o m b i n a t i o n  w i t h  ( 3 . 1 )  a s  a r e s u l t  we c a n  f i n d  t h e  h o r i z o n t a l  
f o r c e  c o m p o n e n t  on  AO, e q u a l  t o  p = q (H - h ) .  F rom t h i s  we h a v e  

q (i ~ s in~)(( i  + sin~ ~ c tg~ ) ( i  ~ s in~)e  2~tg~ - - c t g ~ )  
o-~: 2 cos ~ (2 sin ? (l + sin ~) eVtg~ + cos ~ ) �9 (3.3) 

I n  t h e  p a r t i c u l a r  c a s e  u n d e r  c o n s i d e r a t i o n ,  i t  b e c o m e s  c l e a r  f r o m  t h e  g e o m e t r y  o f  t h e  
s l i p p a g e  l i n e s  t h a t  

(H - -  h)/h = 2 s in?c tg (n /4  ~- ~/2)tevtg~, (3.4) 

/r c fr~ 

Dal ~ "" "r 

B 

Fig. 3 

/ t 

I 1 

A T 

Fig. 4 
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In order for the strip drawing process to be stable and without any discontinuity in 
the right-hand side, it is necessary to satisfy the condition p < csh. From this, in con- 
junction with the utilization of (3.3) and (3.4), we find that the drawing process is rea- 

lizable when 

cos ~e ~tg~ 
s i n ~ <  ((t + s i n ~ ) ~  ( 1 -  sin~)ctg~)e 2vtg~ - - c tg~  " ( 3 . 5 )  

I f  ~ = O, i t  t h e n  f o l l o w s  f rom ( 3 . 5 )  t h a t  t h e  d r a w i n g  o f  t h e  s t r i p  i s  p o s s i b l e  a t  a n g l e s  
o f  ~ < u  = 42 ~ [3 ,  4 ] .  With  a change  in  t h e  i n t e r n a l  f r i c t i o n  a n g l e  t h e  l i m i t  a n g l e  y ,  a l s o  
c h a n g e s ,  t h i s  l a t t e r  a n g l e  h a v i n g  been  d e t e r m i n e d  f rom i n e q u a l i t y  ( 3 . 5 ) ,  a s  w e l l  as  by t h e  
maximum d e g r e e  o f  d e f o r m a t i o n  ~ , ,  o b t a i n e d  on t h e  b a s i s  o f  ( 3 . 4 ) .  As an i l l u s t r a t i o n  we w i l l  
p r e s e n t  t h e  v a l u e s  o f  y~ and r  f o r  t h r e e  i n t e r n a l - f r i c t i o n  a n g l e s :  

r 7 , = 4 2 ~  e , = 0 . 5 7 ,  

r176 7 , = 3 6 ~  e , = 0 , 4 7 ,  

(P----20~ 7 , = 2 8 ~  e,----0.36. 

(3.6) 

We can see from an analysis of the results for (3.6) that the range of angles ~ for which 
the drawing process is possible becomes narrowed as the angle ~ increases. In this case, 
e, also diminishes; We can thus draw the conclusion that the growth in the internal-fric- 
tion angle leading to the embrittlement of the metal in the case of plastic flow impairs 
the conditions and parameters of the strip drawing process through a short die. 

Let us now turn to an examination of the overall problem in which the plastic zone 
consists of the regions shown in Fig. 3. In this case, the solution is constructed numeri- 
cally on a computer. The method used here is based on the transition from the differential 
relationships (1.6) and (1.7) to the finite-difference relationships and consideration of 
some of the properties of the slippage line (in general form, this method has been developed 
by Masso in 1899) [3]. 

Let us divide the angle y into ~ - i equal parts of magnitudes 6 = ~/(s - i). Without 
limiting generality, we will examine the problem for the angles ~ = (m - 1)6 and ~ = (n - 
1)6, since such a value of 6, attributable to the selection of s can always be chosen with 
a sufficient degree of accuracy. It follows from the relationships derived earlier for 
~, ~, and ~ that n = m+ s - i. Let the subscript i be constant along the ~ line, and let 
j be constant along the a line, so that i = i, ..., n; j = i, ..., m. For the rectangle 
CDFB we have an initial characteristic problem. At the point at which the a and ~ lines 
intersect, we have e~ = -~/4 -~/2 - ~ + (i - j)6. Having substituted the differential 
relationships (1.6) b~ the difference relationships, and assuming the angle 8 to be equal 
to its average value, at the starting and ending points we can construct a grid of the slip- 

page line. 

The initially unknown pressure q on AO was determined from the condition that the sum 
of the horizontal components of the individual forces on the line OFB was equal to the draw- 
ing force p = q(H - h). In conclusion, for a specific ~ we can numerically establish the 
relationships that exist between p and q in dependence on e = (H - h)/H. 
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Figure 5 shows q as a function of E for 7 = 15~ and for ~ = i0 ~ 5 ~ , 0 (curves 1-3). 
The extreme right-hand point corresponds to the analytical solution (see Fig. 4), while 
the extreme left-hand point corresponds to the point at which the metal is initially ex- 
pelled out of the left-hand side of the die [3, 4]. This critical point is found through 
utilization of the solution for the compression of the strip with angled notches (see Sec. 2). 

Figure 6 shows p as a function of ~ for 7 = 15~ and for ~ = i0 ~ 5 ~ , 0 (curves 1-3). 
Once again, the extreme right-hand point corresponds to the analytical solution (see Fig. 
4), while the extreme left-hand point corresponds to the point at which the metal is initial- 
ly expelled from the left-hand side of the die. 

It follows from the results shown in Figs. 5 and 6 that an increase in the angle of 
internal friction leads to an increase both in the pressure at the walls of the die and 
in the drawing force. We can see from a quantitative comparison of the solutions for the 
determined 7 and for various ~ with results for various 7 [3, 4] that an increase in ~ by 
5 ~ corresponds to a change in the drawing force and in the pressure at the wall of the die 
by an equal magnitude as is the case when the angle y is replaced by one that is analogous. 

In conclusion, let us note that the extensive application in the mechanics of rocks 
in the case of semibrittle bodies the angle of internal friction in the case of its insig- 
nificant magnitude for metals significantly affects the force parameters in the plastic 
deformation of many metallic structures. Experimental observations conducted on metals 
[I, 8] show that this effect is most significant when the tensile stresses predominate in 
the deformed body. 
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